Notes

hydrochlorides.® The 3-chloropropionate esters, also ob-
served as by-products in this work, would be expected
based on the work of McElvain.11

The high yields and mild conditions suggest a cyclic in-
termediate of the type shown. We have not attempted to
define the mechanism other than by product identifica-
tion; the following is postulation based on published isola-
tions of alkyl 8-alkoxypropionates from treatment of §-
propiolactone with alcohols.12-13
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There are mechanistic similarities to the work of Stirl-
ing,1¢ wherein 4-bromo-N-cyclohexylbutyramide is cy-

clized to a stable, isolable five-membered cyclic imino
ether, either thermally (100°) or in refluxing ethanol.
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Ethanolysis of the imino ether hydrobromide, however,
yields mainly 4-ethoxy-N-cyclohexylbutyramide, plus cy-
clohexylammonium bromide and butyrolactone. Also, the
ethanolysis of 5-bromopentananilide is reported to yield
valerolactone and anilinium bromide.1* Differences in re-
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activity between four-, five-, and six-membered imino
ether intermediates may account for the product differ-
ences.

Experimental Section

All chemicals were reagent grade, used as received. Nmr spec-
tra were recorded on a Varian A-60A spectrometer by Dr. J. H.
Fager, whose assistance is gratefully acknowledged. Melting
points and boiling points are uncorrected.

Methyl 3-Methoxypropionate. Methyl 3-chloropropionimidate
hydrochloride®® (252 g, 1.6 mol) was combined with 1150 ml of
dry ethyl ether and 320 g (10 mol) of methanol in a 2-1. INRB¥
flask fitted with mantle, magnetic stirrer, thermometer, and con-
denser. The reaction mixture was heated at reflux for 6 hr. After
standing for 2 days in the refrigerator, NH4Cl was removed by fil-
tration and the solution was stripped to remove solvents. Distilla-
tion yielded 102.8 g (53%) of methyl-3-methoxypropionate. A por-
tion of the solid residue was recrystallized twice from ethyl ether
containing a few drops of methanol, and the solid was identified
as 3-chloropropionamide, mp 98.5-99.5° (lit.1¢ mp 96-98°). The
ester boiled at 45-48° (18 mm) [lit.17 bp 55° (21 mm)], n?®p 1.4035
(lit.18 n20p 1,4030). Methyl chloride was detected in the reaction
solution by vpc before work-up but was not isolated.

Ethyl 3-Ethoxypropionate. Ethyl 3-chloropropionimidate hy-
drochloride (88.2 g, 0.5 mol) was dissolved in 204 g (5.8 mol) of
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absolute ethanol and heated slowly to 40° over 5 hr with stirring.
Product formation was complete by vpc. After standing over-
night, the reaction was heated to reflux to distil out ethyl chlo-
ride, of which 14 g (43% of theory) was collected in a Dry Ice trap
and identified. After cooling, NH4Cl was removed by filtration
and the remainder of ethyl chloride and ethanol was stripped.
The residual oil was vacuum distilled, yielding a single cut, bp
65-67° (17 mm), 68.8 g (92% [lit.*7 bp 75-77° (20 mm)], n2%p
1.4066 (1it.28 n2% 1.4071). The product contained about 5% ethyl
3-chloropropionate by nmr.

Registry No.—Methyl 3-methoxypropionate, 3852-09-3; methyl
3-chloropropionimidate hydrochloride, 21367-88-4; ethyl 3-ethoxy-
propionate, 793-69-9; ethyl 3-chloropropionimidate hydrochloride,
21367-89-5.
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The rate of cyclization of N-(o-carboxyphenyl)urea in
strongly basic solutions is first order in hydroxide ion con-
centration.2-3 This observation was presented as evidence
for anionic attack upon a carboxyl anion (1).2:3 If mecha-
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1

nisms 2 or 3 were valid, then the rates would respectively
decrease or remain constant with increasing hydroxide
ion.2-3 The base dependency of the ring closure could also
be explained by a mechanism (Scheme I) in which rate-
determining collapse of a tetrahedral intermediate is as-
sisted by hydroxide ion. The rate law governing this
mechanism (eq 1) shows first-order dependence on hy-
droxide ion if k-3 > koK[OH-]. Therefore, anionic nu-
cleophilic attack upon a carboxyl anion need not be in-
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voked on the basis of previous data.* Because of this am-
biguity and because of the uniqueness of mechanism 1,3
we felt it important to test whether the alternative (or a
kinetic equivalent) might be correct.
by = kl'sz [OH] § M
k. + R K[OHT]

Unlike the mechanism of Hegarty and Bruice,?2:8
Scheme I requires that the nucleophilic nitrogen of the
starting material bear two hydrogens. Consequently, we
examined 1-o0-carboxyphenyl-3-methylurea (4), a com-
pound lacking this property. The substrate was found to
cyclize at a rate directly proportional to the hydroxide
concentration (kg = 9.1 X 10~4 M~1 gec™1, 30.0°, 0.6-1.0
M hydroxide). Moreover, the rate of cyclization is nearly
the same (2.2 times as fast) as that of the corresponding
nonmethylated urea. These observations eliminate
Scheme I and support the contention that an intramolec-
ular anionic nucleophile can indeed react with a carboxyl
anion.%

Scheme I
HO. (L0 -
N A “NH 0 NH _-0
e >~ keow
NH

l ky ~
—C = HO

'O\C(}LC/O
05 |

HOD NH

-k-z—> product

Experimental Section

Materials. N-(o-Carboxyphenyl)urea was prepared from an-
thranilic acid and potassium cyanate.” 1-0-Carboxyphenyl-3-
methylurea (4) was prepared from isatoic anhydride and methyl-
amine.® The product was crystallized from wet acetone to give
white crystals of mp 187-189° (lit.® mp 188-189°) and with a sat-
isfactory elemental analysis. Cyclization of the methylurea in 6 N
HCl to 3-methyl-2,4(1H,3H)-quinazolinedione was carried out by
the procedure of Hayao, et al.®

Kinetics. A stoppered cuvette containing 3.00 ml of aqueous
sodium hydroxide (0.6-1.0 M) was equilibrated at 30.0° for 20 min
within the thermostated cell compartment of a Cary 14 spectro-
photometer. A small amount (25 ul) of a methanolic solution of
1-o-carboxyphenyl-3-methylurea was then added to the cuvette
(by means of a small stirring rod flattened at one end) such that
the initial urea concentration in the cuvette was 2.6 X 10~* M.
The increase in absorbance at 332 nm was traced as a function of
time until the reaction was completed. First-order plots were lin-
ear to greater than 2 half-lives.

Notes

Product Analysis. The spectrum of 3-methyl-2,4(1H,3H)-quin-
azolinedione in .1 N NaQH wag shown to be identical with the
“infinity spectrum” of a kinetic run under the same conditions.
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and the Acid-Catalyzed Decomposition of Glyoxal
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In our previous reportl® we showed that aqueous glyoxal
reacts with alkanols in the presence of acid catalysts to
give glycolates, bisacetals, dioxolane, and bisdioxolane
derivatives in varying yields depending upon the initial
alcohol /glyoxal ratio. Although the yields of acetal-type
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products could be controlled by the variation in the alco-
hol/glyoxal ratio, the yields of glycolates were relatively
constant. In this report we describe the reaction of cyclo-
hexanol to give glycolates in major amounts, and of other
alcohols with glyoxal in which great differences in product
type are observed depending upon reaction conditions.
These observations plus a study of the hydrolysis and
acid-catalyzed decomposition of glyoxal acetals allows us
to suggest a mechanistic explanation for the differences
observed.

Results

Unlike all of the other alkanols brought into reaction
with glyoxal at 100-120°, cyclohexanol reacts to give gly-



